MODULE 1: Introduction to the Microbiology Laboratory

When you hear the term *microbe*, what comes to mind? Many students think of "germs" such as bacteria and viruses. However, microbiology encompasses many other organisms, including archaea, yeasts, molds, protozoa, algae, slime molds, and even parasites and vectors. It is also a science that studies acellular entities such as viruses, viroids, and prions. What is common to these microbes is the inability of scientists to observe them without the aid of a microscope.

The *Principles of Microbiology* laboratory exercises focus primarily on the observation, cultivation, and identification of bacteria and common eukaryotic microbes such as fungi and protozoa. Over the course of the semester, you will learn various techniques for the safe handling and cultivation of microorganisms, as well as the skills and good practices necessary for working confidently in any biology laboratory.

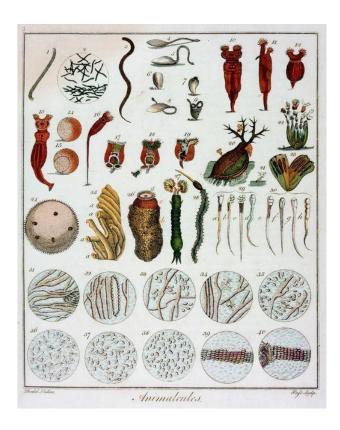


Figure 1.1: An artistic rendering from 1795 of the first observations of microorganisms or "animalcules" by Antonie van Leeuwenhoek, a self-taught scientist and pioneer in microscopy.

Middlesex College Culture Code

All stock cultures at Middlesex College are assigned a unique number. These numbers are an easy way to label tubes and plates to identify the microorganisms used in lab exercises. When completing reports, scientific names rather than culture code numbers should be used.

Just as you have two names, scientists use *binomial nomenclature* when referring to organisms. These names are based on taxonomic hierarchy where the first name is the *genus* (plural, genera) and the second is the *species*. For example, the binomial name of humans is *Homo sapiens*.

Whenever a binomial name is first used, the genus and species names should be written out in full . After this, the genus may be abbreviated by a letter, but the species is never abbreviated.

First use: Escherichia coli

Subsequent use: E. coli

Since multiple species may exist within a given genus, microbiologists often only use the genus, e.g., *Pseudomonas*, or the genus followed by the abbreviation "sp." or "spp." to designate any species. For example, *Pseudomonas* sp. might refer to *Pseudomonas aeruginosa*, *Pseudomonas fluorescens*, or another species of *Pseudomonas* entirely.

Conventional rules exist for typing or handwriting a scientific name. When typing, both genus and species are italicized but not underlined. When handwritten, both names are underlined:

When typing: Staphylococcus aureus
When handwriting: Staphylococcus aureus

Correctly formatting names, whether in a report or on a patient's chart, is good lab practice and avoids confusion that can lead to error. This may occur when a word that is used as a general descriptor is also a genus name (think of a person named Ms. Tall, who may or may not be tall). In microbiology, *Bacillus* is a good example. When written as a lower-case term, "bacillus" means a rod-shaped bacterial cell that is characteristic of *many* bacterial genera. Thus, while cells of the genera *Escherichia* and *Pseudomonas* are also rod-shaped bacteria, *Bacillus* refers to a <u>specific</u> genus of rod-shaped bacteria when formatted as such.

MICROBIOLOGICAL CULTURE CODE

The following is a list of the microorganisms used by the Biology Department at MCC. As a time saving device, the cultures have been assigned the following numbers:

1. Escherichia coli	25. Lactococcus lactis
2. Staphylococcus aureus	26. Aspergillus niger
3. Staphylococcus epidermidis	27. Penicillium notatum
4. Bacillus subtilis	28. Agrobacterium tumefaciens
5. Bacillus megaterium	29A. Rhizopus stolonifer +
6. Serratia marcescens	29B. Rhizopus stolonifer –
7. Micrococcus luteus	30. Chromobacterium violaceum
8. Pseudomonas aeruginosa	31. Moraxella catarrhalis
9. Klebsiella aerogenes	32. Escherichia coli MM294
10. Streptococcus salivarius	33. Klebsiella pneumoniae
11. Enterococcus faecalis	34. Enterococcus faecium
12. Alcaligenes faecalis	35. Geobacillus stearothermophilus
13. Proteus vulgaris	36. Salmonella typhimurium (Ames Strain)
14. Saccharomyces cerevisiae	37. Citrobacter freundii
15. Streptococcus agalactiae	38. Acinetobacter calcoaceticus
16. Clostridium sporogenes	39. Halobacterium salinarum
19. Mycobacterium smegmatis	40. Escherichia coli B
20. Bacillus cereus	41. Pseudomonas fluorescens
21. Morganella morganii	42. Streptomyces griseus
22. Proteus mirabilis	43. Streptomyces epidermidis
23. Rhodospirillum rubrum	44. Streptomyces venezuelae
24. Micrococcus roseus	47. Neisseria perflava